eIF4EBP3L Acts as a Gatekeeper of TORC1 In Activity-Dependent Muscle Growth by Specifically Regulating Mef2ca Translational Initiation
نویسندگان
چکیده
Muscle fiber size is activity-dependent and clinically important in ageing, bed-rest, and cachexia, where muscle weakening leads to disability, prolonged recovery times, and increased costs. Inactivity causes muscle wasting by triggering protein degradation and may simultaneously prevent protein synthesis. During development, muscle tissue grows by several mechanisms, including hypertrophy of existing fibers. As in other tissues, the TOR pathway plays a key role in promoting muscle protein synthesis by inhibition of eIF4EBPs (eukaryotic Initiation Factor 4E Binding Proteins), regulators of the translational initiation. Here, we tested the role of TOR-eIF4EBP in a novel zebrafish muscle inactivity model. Inactivity triggered up-regulation of eIF4EBP3L (a zebrafish homolog of eIF4EBP3) and diminished myosin and actin content, myofibrilogenesis, and fiber growth. The changes were accompanied by preferential reduction of the muscle transcription factor Mef2c, relative to Myod and Vinculin. Polysomal fractionation showed that Mef2c decrease was due to reduced translation of mef2ca mRNA. Loss of Mef2ca function reduced normal muscle growth and diminished the reduction in growth caused by inactivity. We identify eIF4EBP3L as a key regulator of Mef2c translation and protein level following inactivity; blocking eIF4EBP3L function increased Mef2ca translation. Such blockade also prevented the decline in mef2ca translation and level of Mef2c and slow myosin heavy chain proteins caused by inactivity. Conversely, overexpression of active eIF4EBP3L mimicked inactivity by decreasing the proportion of mef2ca mRNA in polysomes, the levels of Mef2c and slow myosin heavy chain, and myofibril content. Inhibiting the TOR pathway without the increase in eIF4EBP3L had a lesser effect on myofibrilogenesis and muscle size. These findings identify eIF4EBP3L as a key TOR-dependent regulator of muscle fiber size in response to activity. We suggest that by selectively inhibiting translational initiation of mef2ca and other mRNAs, eIF4EBP3L reprograms the translational profile of muscle, enabling it to adjust to new environmental conditions.
منابع مشابه
Additional document 5. Transcriptional control of cell growth
Genes up-regulated with increasing growth rate The initiation of translation (i.e., formation and regulation of the eIF4E-cap complex) is tightly regulated during growth [1-3] and probably acts to integrate cell growth and cell division [4]. Thus, dysregulation of cap-dependent translation has been reported to confer malignant characteristics and to induce cancer [5, 6]. Our finding that all ye...
متن کاملSch9 is a major target of TORC1 in Saccharomyces cerevisiae.
The Target of Rapamycin (TOR) protein is a Ser/Thr kinase that functions in two distinct multiprotein complexes: TORC1 and TORC2. These conserved complexes regulate many different aspects of cell growth in response to intracellular and extracellular cues. Here we report that the AGC kinase Sch9 is a substrate of yeast TORC1. Six amino acids in the C terminus of Sch9 are directly phosphorylated ...
متن کاملIntestinal apical polarity mediates regulation of TORC1 by glucosylceramide in C. elegans.
TORC1 (target of rapamycin complex 1) plays a central role in regulating growth, development, and behavior in response to nutrient cues. We previously showed that leucine-derived monomethyl branched-chain fatty acids (mmBCFAs) and derived glucosylceramide promote intestinal TORC1 activity for post-embryonic development and foraging behavior in Caenorhabditis elegans. Here we show that clathrin/...
متن کاملeIF4A inactivates TORC1 in response to amino acid starvation
Amino acids regulate TOR complex 1 (TORC1) via two counteracting mechanisms, one activating and one inactivating. The presence of amino acids causes TORC1 recruitment to lysosomes where TORC1 is activated by binding Rheb. How the absence of amino acids inactivates TORC1 is less well understood. Amino acid starvation recruits the TSC1/TSC2 complex to the vicinity of TORC1 to inhibit Rheb; howeve...
متن کاملFission yeast TORC1 prevents eIF2a phosphorylation in response to nitrogen and amino acids via Gcn2 kinase
Serine 51 phosphorylation of the eukaryotic initiation factor-2a (eIF2a) is an important mechanism involved in blocking general protein synthesis in response to diverse types of stress. In fission yeast, three kinases (Hri1, Hri2 and Gcn2) can phosphorylate eIF2a at serine 51. In this study, we show that Tor2, as part of the TORC1 complex, prevents the phosphorylation of eIF2a in cells growing ...
متن کامل